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ABSTRACT This article provides a survey of recent results on exploiting parametric auto-regressive (AR)
models for adaptive radar target detection. Specifically, three types of radar systems are considered, including
phased-array radar with multiple co-located transmitters and receivers, distributed multi-input multi-output
(MIMO) radar with widely and spatially separated transmitters and receivers, and passive radar which uses
existing sources as illuminators of opportunity (IOs). These radar systems are of significant interest for a
wide range of military and civilian applications. For each of the three types of radars, we discuss how AR
processes can be employed to succinctly model the underlying signal correlation and efficiently estimate it
from limited data, thus enabling effective target detection in complex non-homogeneous environments when
training data is limited. We illustrate the performance of such parametric model assisted detectors relative
to conventional non-parametric approaches by using computer simulated and experimental data.

INDEX TERMS Parametric modeling, adaptive target detection, phased-array radar, distributed multi-input
multi-output (MIMO) radar, passive radar.

I. INTRODUCTION
Parametric modeling is frequently used in the design and
analysis of radar systems (e.g., [1]–[10]). It employs physical
or statistical models consisting of a finite number of param-
eters that are useful in the representation and processing of a
signal for radar functions. There are many parametric mod-
els available for radar applications, e.g., geometrical theory
of diffraction model [1], hidden Markov model [2], com-
pound Gaussian model [3], and auto-regressive (AR) model
[4]–[10], etc. The AR model has attracted extensive research
efforts for radar target detection since it can fit both Gaussian
and non-Gaussian observations. In addition, parameter esti-
mation of the AR model is relatively simple, which usually
involves solving a system of linear equations.

Adaptive target detection is a fundamental topic for radar
engineers. The problem involves detecting a weak target
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signal from strong interference. Effective interference can-
cellation requires some accurate knowledge, e.g., the covari-
ance matrix of the interference. Many adaptive detection
algorithms, such as the well-known sample matrix inver-
sion (SMI) detector [11] and Kelly’s generalized likelihood
ratio test (GLRT) [12], need a large amount of homoge-
neous training (secondary) data to obtain an accurate estimate
of the clutter covariance matrix. However, real-world radar
interference is often non-homogeneous, which precludes the
availability of adequate training data for covariance matrix
estimation. We consider radar detection in such scenarios
with limited data, i.e., lack of sufficient training data for
interference estimation. The problem can be addressed by
utilizing a suitable parametric model for the interference.
This article reviews some recent developments on exploiting
parametric AR models for target detection in three different
types of radar systemswith limited data, namely phased-array
radar, distributed multi-input multi-output (MIMO) radar,
and passive radar, respectively.
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A standard phased-array radar can be considered as a
single-input multi-output (SIMO) system, where a single
waveform is radiated and the returned signal is collected
via multiple receiving antenna elements. Space-time adap-
tive processing (STAP) techniques, which have been devel-
oped for adaptive target detection in phased-array radar
and are mostly used assuming homogeneity of the train-
ing data, have shown significant performance loss in non-
stationary/non-homogeneous interference environments of
unknown statistics [14]. One way to solve the inhomogeneity
related problem is to use data selection techniques based on
either knowledge-based criteria or data-adaptive methodolo-
gies [15]–[17]. Another different strategy to reduce training
requirements in STAP is to utilize a suitable ARmodel for the
clutter and exploit the parametric model for target detection.
In particular, multi-channel AR models have been found to
be very effective in representing the temporal correlation
among different types of clutter signals [18]. Thus, several
parametric detectors were developed by modeling the clut-
ter as an AR process which exploits the structural informa-
tion of the clutter covariance [5]–[10], [19]–[21]. AR model
based estimation of clutter parameters is closely related to
multi-stageWiener filtering through conjugate-gradient (CG)
iterations, which has led to the development of several
CG-based parametric detectors [22], [23].

Distributed MIMO radar that employs multiple widely
separated antennas within the transmit and receive aperture,
illuminates a target from different spatial aspects, which
provides the ability to enhance performance by exploiting
the spatial or geometric diversity [24]–[27]. However, the
non-homogeneous problem in such a system is even worse
than the phased-array radar due to the multistatic config-
uration. Specifically, the non-homogeneity of the clutter
is caused by two factors, including the azimuth-selective
backscattering of the clutter scatterers observed by differ-
ent transmit-receive (Tx-Rx) antenna pairs as well as the
non-stationary clutter covariance structure across resolution
cells [28]. This issue can be addressed by using a set of inde-
pendent scalar AR processes to model the clutter observed by
different Tx-Rx pairs, which accounts for the inhomogeneity
of the first type [29], [30]. With the parametric modeling
of the disturbance, there is no need to use range training
data from adjacent resolution cells to estimate the clutter
covariance matrix, which bypasses the inhomogeneity across
resolution cells in a neighborhood.

Passive radar seeks to exploit a readily available illumi-
nator of opportunity (IO), e.g., frequency modulation (FM)
radio, television, and digital audio/video broadcasting,
to detect and track targets of interest [31]–[33]. Passive radar
is more covert and provides reduced RF pollution to the
electromagnetic environment since it does not need a trans-
mitter. However, this also imposes an additional challenge
due to the non-cooperative nature of the system, since the
transmitted signal is generally unknown at the receiver [34].
The unknown IO waveform can be treated as either a deter-
ministic signal or a stochastic signal [35], [36]. Due to coding,

FIGURE 1. J-channel AR(P) process: The J × 1 vector d`(k) is the spatial
snapshot of the disturbance at the `-th range bin and k-th pulse. It is
modeled as an AR process with coefficients {A(p)}Pp=1 and spatial noise
vector ε`(k).

modulation, pulse shaping, and propagation effects, the IO
waveform is generally correlated and such temporal correla-
tion can be exploited by modeling the waveform as an AR
process to improve the detection performance [37]–[39].

In the remainder of this paper, we detail how AR models
can be leveraged for parametric detection in phased-array
radar (Section II), distributed MIMO radar (Section III),
and passive radar (Section IV). We offer some concluding
remarks in Section V.
Notations: We use boldface symbols for vectors (lower

case) and matrices (upper case). (·)T denotes the transpose
and (·)H the conjugate transpose. CN (u,6) denotes the com-
plexGaussian distributionwithmean u and covariancematrix
6. CN×1 denotes the set of N ×1 complex vectors. bxc is the
floor function that outputs the greatest integer less than or
equal to x.

II. PARAMETRIC DETECTION FOR
PHASED-ARRAY RADAR
Consider a phased-array radar that employs J antennas to
transmit a coherent burst of pulses at a constant pulse rep-
etition frequency (PRF) fr = 1/Tr, where Tr is the pulse
repetition interval (PRI). The transmitter carrier frequency is
fc = c/λ, where c is the speed of light and λ is the wave-
length. The time interval over which the waveform returns
are collected is commonly referred as the coherent processing
interval (CPI). The CPI length is equal to KTr where K
is the number of pulses in the CPI. At the radar receiver,
each antenna has its own down-converter, matched filter,
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FIGURE 2. Parametric detector for STAP phased-array radar.

and analog-to-digital converter (ADC). Matched filtering is
performed separately on the returns from each pulse, after
which the signals are sampled by the ADC to create slow-
time and fast-time samples [40]. Slow-time samples are taken
at the PRF, while fast-time samples are taken at a sampling
rate determined by the bandwidth of the radar waveform
and each fast-time sample corresponds to a specific range
bin. The slow/fast-time sampling along with spatial sampling
performed by the antenna elements result in a data cube.
A fundamental problem for the radar is to detect whether
targets are present in each range bin. Let x0(k) ∈ CJ×1

contain the J spatial samples collected at the k-th pulse for
a test range bin. The target detection problem is to select
between two hypotheses in the presence of spatially and
temporally correlated disturbance [8]:

H0 : x0(k) = d0(k),

H1 : x0(k) = αs(k)+ d0(k), k = 0, 1, · · · ,K − 1, (1)

where s(k) is the known target steering vector which is the
response of the system to a unit amplitude target, α is the
unknown target amplitude, and {d0(k)}K−1k=0 are the distur-
bance signals (i.e., clutter and noise) that are in general
correlated in space and time. Particularly, s(k) depends on
the array geometry and is parameterized by the target spatial
frequency ws and the normalized Doppler frequency wd . For
a uniformly spaced linear array (ULA), the j-th element of the
target steering vector s(k) is given by e2π (j−1)wse2π (k−1)wd .
For training-based detectors, it is assumed that there is a set
of target-free training signals x`(n), ` = 1, . . . ,L, which
are often signals from range bins that are close to the test
range bin.

The detection problem in (1) can be solved by employing
either a covariancematrix based approach [11], [12] or a para-
metric method [5]–[9]. Here, the structural information of
the disturbance covariance matrix is exploited to improve the
detection performance and reduce the training requirement.
More precisely, as shown in Fig. 1, the disturbance signal
{d`(k)}L`=0 is modeled as a J -channel AR process with known

model order P:

d`(k) = −
P∑
p=1

AH (p)d`(k − p)+ ε`(k), (2)

where {A(p)}Pp=1 denote the unknown J × J AR coefficient
matrices to be estimated and ε`(k) denotes the J × 1 spatial
noise vectors that are temporally white but spatially colored
Gaussian noise: ε`(k) ∼ CN (0,Q), where Q is the unknown
J × J spatial covariance matrix.
The multi-channel AR model in (2) has been used to

develop parametric STAP detectors in several efforts [5]–[8].
In the following, we discuss a parametric GLRT [13]. First,
the GLRT is evaluated by expressing the likelihood ratio as
a function of unknown parameters: the target amplitude α,
AR coefficient matrices {A(p)}Pp=1, and the spatial covariance
matrix Q. Subsequently, the likelihood function under each
hypothesis is maximized to yield the maximum likelihood
estimates (MLEs) of the unknown parameters, which are then
used to replace the unknown parameters in the likelihood
ratio and compute the test statistics. The flowchart of the
parametric GLRT is shown in Fig. (2). The amplitude esti-
mation under H1 turns out to be the key problem since the
other parameters can be readily obtained once an estimate of
α is available. However, the cost function of the maximum
likelihood (ML) amplitude estimator is highly non-linear.
Newton-like iterative searches are usually used to find the
MLE of the amplitude. A sub-optimum but computation-
ally more efficient estimator, referred to as the asymptotic
ML (AML) estimator, can be used to construct a simplified
parametric GLRT. It can be shown that, with the paramet-
ric AR modeling of the disturbance, the parametric GLRT
reduces to a ratio of the determinants of the ML estimates
of spatial covariance matrices under the two hypotheses [8]:

TGLRT =
|Q̂0|

|Q̂1|

H1
≷
H0

γGLRT , (3)

where γGLRT denotes the test threshold to meet a preset prob-
ability of false alarm, and Q̂0 and Q̂1 are the MLEs of the
spatial covariance matrix Q under the null and alternative
hypotheses, respectively.
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To illustrate the merit of parametric modeling in the STAP
detection problem, we present test results using data from
KASSPER [41] and MCARM [42]. This allows us to assess
the influence from the mismatch between the AR model
assumption and the real disturbance.

1) KASSPER DATASET
The KASSPER 2002 dataset contains many real-world
effects including heterogeneous terrain, array errors, and
dense ground targets. The simulated airborne radar was flying
at 3000 meters altitude and speed of 100 m/s, traveling east
with a 3◦ crab angle. The radar was operating at 1240 MHz
with a peak power of 15 kW. The 11 virtual antenna array
elements were spaced slightly less than a half-wavelength
apart at 0.1092 m (0.9028 half-wavelength spacing), and the
transmit array is uniformly weighted in the horizontal dimen-
sion and phased to steer the mainbeam to 195◦. The PRF
was 1984 Hz and the CPI contains 32 pulses. The KASSPER
dataset simulates a dense target environment. Of particular
interest are the targets in the mainbeam of the radar within
the range swath of interest. In total, there are 268 targets in
the range interval between 35 km and 50 km.

We apply the parametric GLRT detector to the KASSPER
data of interest and compute the test statistics with respect
to Doppler frequency and range cells. To compare with other
techniques, we count the number of detection while setting
the threshold with a constraint on the number of false alarm.
Due to range/Doppler sidelobes resulting from pulse com-
pression and Doppler filtering, it is common for a target to
spread into nearby range-Doppler bins. For this reason, it is a
standard procedure for a radar to cluster target detections such
that a detection in a given range-Doppler cell is associated
with a target that lies in a contiguous range cell or Doppler
bin. For the results reported here, we cluster±1 cells in range
and ±1 bands in Doppler for all processing schemes. Once
we declare a detection in its region, the corresponding test
value is removed from the original test statistics to avoid over-
counting. For comparison purposes, the Joint Domain Local-
ized (JDL) technique [43], [44] with 3 × 3 local processing
region (LPR) is applied to the KASSPER dataset. There are
64 Doppler frequency bands and two guard cells are used at
each side of the test range cell. The number of false alarm Nfa
is constrained to 10. To improve the detection performance,
we limit the training data by applying the Innovation Power
Sorting (IPS) technique [45]. When J = 11, L = 22, and
P = 2, the detection maps for the parametric GLRT and
JDL are shown in Fig. 3. The results show that the parametric
GLRT can detect 102 targets while JDL can detect 25 targets.

2) MCARM DATASET
In this section, the MCARM dataset obtained from a real-
world multi-channel airborne experiment, and contains clut-
ter in various terrains including mountains, rural, urban,
and land/sea interface, is considered. The MCARM data
was collected from a BAC 1-11 airborne platform operating
at L-Band. The MCARM array has 16 columns and each

FIGURE 3. Detection maps of (a) the parametric GLRT, and (b) the JDL
detector for the KASSPER dataset. The true targets are represented by
blue cross signs and the detections (range-Doppler cells with test
statistics exceeding the detection threshold) are shown in green bars.

column consists of two four-element sub-arrays. Each
sub-array has its own output or is combined into a single
output per column with up to 24 outputs for the array. Since
the true joint space-time covariance matrix of the MCARM
dataset is unavailable, a power measure, called input SINR
(per-pulse, per-channel), is adopted and will be computed
from the data. It is defined as SINR = |α|2/σ 2

d , where α is the
target amplitude and σ 2

d denotes the variance (power) of each
element of the disturbance vector at each time instant. The
MCARM database, specifically acquisition rd050575, has
been used extensively to assess the performance of the para-
metric GLRT approach. To test the detection performance
potential, an artificial target with an SINR of −30 dB is
injected in the range bin 295. The disturbance power σ 2

d is
estimated as a five-bin average centered on the range bin in
which the target is placed. Model order values P = 1, 2, 3, 4
were evaluated for each parametric test and the model with
the best performance was selected. The selection criterion is
the difference between the target peak value and the highest
non-target peak value. Diagonal loading of 40 dB for the
adaptive matched filter (AMF) detector [46] is applied. Fig. 4
shows the test statistics for the three considered detectors. It is
seen that the parametric GLRT can detect the target with a
gain of 23 dB even without training (L = 0), while JDL has
a gain of 18.5 dB with L = 8 training signals, but the AMF
fails to declare a detection with L = 8.

III. PARAMETRIC DETECTION FOR DISTRIBUTED
MIMO RADAR
Observing targets over wide angular sectors with distributed
MIMO radar offers great benefits for Doppler processing and
moving target detection (MTD) [24]. Compared with tradi-
tional monostatic or bistatic radar, distributed MIMO radar is
particularly useful when the targets are difficult to distinguish
from the background clutter by a single illumination path,

60462 VOLUME 9, 2021



F. Wang et al.: Overview of Parametric Modeling and Methods for Radar Target Detection With Limited Data

FIGURE 4. The test statistics of detectors for the MCARM dataset with
J = 4 spatial channels, K = 128 pulses, and no (L = 0) or limited (L = 8)
limited training data.

FIGURE 5. Distributed MIMO radar configuration for moving target
detection.

i.e., targets with low radial velocities or blind speeds [47].
Moreover, the joint processing of the received signals in
MIMO radar provides further performance improvement
compared tomultistatic radar, referring here to the case where
each receiver performs its own Doppler estimation.

Consider the detection of a moving target using a dis-
tributed MIMO radar [24]–[26], [29]. Without loss of gen-
erality, assume a moving target with a velocity v , (vx , vy)
is in the same 2-dimensional (2-D) plane of the transmit
and receive antenna elements of the distributed MIMO radar
system. The techniques discussed in the sequel can be easily
extended to the 3-D case [29]. The transmit and receive anten-
nas are assumed to be on stationary platforms. The relative
geometry of the setup is illustrated in Fig. 5. Let the target
be illuminated by M transmit antennas with illumination
angles θtm, m = 1, · · · ,M . The signals scattered by the
target are collected by N receive antennas placed at locations
of direction θrn, n = 1, · · · ,N . Given the M transmitters
and N receivers, there are MN Tx-Rx paths, resulting in
MN different spatial looks of the resolution cell under test.

To exploit target spatial diversity for detection, theM transmit
waveforms are assumed to be orthogonal for ease of sep-
aration at the receiver. The same approach as that used in
standard Doppler radars which employs pulsed transmission
is used here [40]. Each transmitter in the MIMO radar system
sends a succession of K periodic pulses, i.e., K repetitions of
an orthogonal waveform over a CPI. Each receiver employs
a bank of M matched filters corresponding to M orthogonal
waveforms. The matched filter output is sampled at the pulse
repetition interval (PRI) via slow-time sampling. A vector
xmn ∈ CK×1 contains K samples of the matched filter output
(within a CPI) at the n-th receiver matched to the transmitted
waveform from the m-th transmitter. The detection problem
is then to test the presence of the moving target in the cell of
interest using the observations {xmn}.

Specifically, the target detection problem involves select-
ing between the following two hypotheses [29]:

H0 : xmn = dmn,

H1 : xmn = αmns(fmn)+ dmn,

n = 1, · · · ,N ;m = 1, · · · ,M , (4)

where αmn denotes the unknown signal amplitude associated
with the (m, n)-th Tx-Rx pair and dmn is the clutter and noise
components. With widely separated antennas, the ampli-
tude αmn varies significantly with aspect angle, due to the
azimuth-selective backscattering [24]. Thus, {αmn}, which are
different for different Tx-Rx pairs, are modeled as determin-
istic unknown parameters. In addition, dmn is the disturbance
signal that integrates the clutter and noise. Further, s(fmn)
is a K × 1 steering vector with the k-th element given by
e−2π (k−1)fmn , where fmn denotes the normalized Doppler
frequency such that (cf. Fig. 5)

fmn =
Tr
λ
[vx(cos θtm + cos θrn)+ vy(sin θtm + sin θrn)], (5)

where Tr denotes the PRI. The moving target is assumed to
be in the far field such that the Doppler shift with respect to
the antennas is constant within the CPI.

Due to the multistatic configuration inherent in distributed
MIMO radar, it is straightforward to consider the disturbance
signals from different Tx-Rx pairs as non-homogeneous [48],
[49]. In order to account for the non-homogenous distur-
bance, a set of MN different AR processes can be employed
to model the disturbance signal seen by different Tx-Rx
pairs. These independent AR processes are capable of mod-
eling variations in both the clutter structure and power
level across different probing-observing angles in distributed
MIMO radar [29]. Specifically, the k-th slow-time sample
of the disturbance for the (m, n)-th Tx-Rx pair, i. e., dmn(k),
is modeled as a scalar AR process with model order Pmn:

dmn(k) = −
Pmn∑
p=1

amn(p)dmn(k − p)+ εmn(k), (6)

where amn(p) denotes the p-th AR coefficient
and εmn(k) ∼ CN (0, σ 2

mn) is the zero-mean driving noise
with variance σ 2

mn.
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FIGURE 6. Parametric detector for distributed MIMO radar.

To test for the presence of a target in a resolution cell, a
parametric detection solution can be developed by using the
above AR model, e.g., a parametric detector that maximizes
the likelihood function under both hypotheses in (4) over the
unknown parameters including target amplitudes αmn, veloc-
ities vx and vy, driving noise variance σ 2

mn, and the AR coef-
ficients {amn(p)}

Pmn
p=1. Note that the MLE of the target veloc-

ity requires a 2-D optimization that can be solved through
numerical approaches [25]. The other parameters can then
be obtained via least squares. Finally, the parametric GLRT
detector for MIMO radar, referred as MIMO-PGLRT, can be
obtained by substituting all the parameter estimates back into
the likelihood ratio. It can be shown that the detector performs
local adaptive subspace detection, non-coherent combining
using local decision variables, and a global threshold com-
parison, as shown in Fig. 6 [29]. Specifically, a test statistic is
computed at each sensor by first adaptively projecting the test
signal xmn into two distinct subspaces and then computing the
energy of both projected test signals. The aggregate statistic
which is obtained through a non-coherent combination of the
test statistic computed at each sensor is compared with the
global threshold. The two distinct subspaces are the orthog-
onal complement of a regression data matrix formed using
the return signal within a CPI under hypothesis H1 and the
alternative hypothesis, respectively.

The MIMO-PGLRT detector does not require any training
data. For comparison, we also consider two conventional
covariance matrix based detectors, both depending on train-
ing. The first detector is the sample covariancematrix (SCM)-
based detector [24]. This method requires L homogeneous
training signals for each transmit-receive pair to form a pair-
wise disturbance covariance matrix

Ĉmn =
1
L

L∑
`=1

xmn,`xHmn,`, (7)

where xmn,` ∈ CK×1 denotes the `-th training signal for
the (m, n)-th Tx-Rx pair. The covariance matrix Ĉmn is used
to whiten the observation xmn prior to cross correlating it
with the Doppler steering vector s(fmn). To ensure that the

TABLE 1. Parameters Used in Simulations of Distributed MIMO Radar.

sample covariance matrix is full rank, L > K range training
signals are required for each transmit-receive pair. In general,
L = 2K training signals are needed for an acceptable perfor-
mance. As such, the SCM detector requires at least 2KMN
training signals in total, which may be difficult to fulfill in a
non-homogeneous environment.

The second detector is the robust MIMO detector [26],
which employs a compound-Gaussian model for both the test
and training signals across different Tx-Rx pairs to address
non-homogeneous training. The detector uses a fixed-point
estimate (FPE) of the covariance matrix based on the follow-
ing equation:

Ĉmn =
K
L

L∑
`=1

xmn,`xHmn,`
xHmn,`M̂

−1
mnxmn,`

, (8)

which can be solved by iterative approaches [26].
The parametric MIMO-PGLRT, the covariance matrix

based SCM, and the robust MIMO detector are compared
with each other. The receiver operating characteristic (ROC)
curves for the three detectors are shown in Fig. 7, where the
parametric MIMO-PGLRT uses no training (L = 0), while
two training sizes (L = 36 and L = 64) are considered for the
SCM and robust MIMO detectors. The results are obtained
when the disturbance signals are generated with different set-
tings of clutter power and scatterer root-mean-square (RMS)
velocity for different Tx-Rx pairs. This general clutter model
[25], [48], which has been widely used to model the clutter
Doppler characteristics and is not an AR process, is employed
to evaluate the performance of the MIMO-PGLRT with
model mismatch. The Parameters used in the simulation are
listed in Table 1. The clutter-to-noise ratio is 30 dB, and
the signal-to-interference-plus-noise ratio (SINR) is 20 dB.
The target velocity is 108 km/h with the moving direction
randomly and uniformly chosen in the range [−180◦, 180◦]
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FIGURE 7. ROC curves for the MIMO-PGLRT detector, the SCM detector,
and the robust MIMO detector in clutter with 2× 2 antennas, K = 32
pulses, and L = 0, 36, 64 training data.

for each simulation trial. The fluctuating target amplitudes
αmn are generated as complex Gaussian random variables
with zero mean and variance σ 2

αmn
. There are two transmitters

at 0◦ and 65◦ relative to the target and two receivers at −30◦

and 40◦. The clutter power and RMS values of the scatterer
velocities are, respectively, selected as [1.5, 0.8, 2, 1] and
[0.5, 1.5, 1.2, 0.8] m/s for the four Tx-Rx pairs. Note that the
AR coefficients amn estimated for different Tx-Rx pairs are
still different as the disturbance is non-homogeneous across
Tx-Rx pairs.

Fig. 7 indicates that the covariance matrix based detectors
benefit significantly from a larger training size. In particular,
when L = 2K = 64, the robust MIMO detector outperforms
the MIMO-PGLRT with L = 0, while the gap between
the SCM and the MIMO-PGLRT is considerably smaller.
The simulation results also demonstrate the advantage of the
MIMO-PGLRT detector, which does not use any training sig-
nal, over the covariancematrix based detectors when the latter
are supplied with limited training signals (L = 36). Specif-
ically, the robust MIMO detector shows moderate perfor-
mance loss compared to the MIMO-PGLRT detector, while
the SCM detector fails to produce a detection. The advantage
of the MIMO-PGLRT detector stems from the set of scalar
AR models that take into account the non-homogeneous clut-
ter variations from cell to cell. It is noted that covariance
matrix based detectors often require L ≥ 2K homogeneous
training signals to reach good detection performance [12].

IV. PARAMETRIC DETECTION FOR PASSIVE RADAR
Passive radar exploits non-cooperative illuminators of oppor-
tunity (IOs) to detect and track targets of interest without
requiring a dedicated transmitter. Although passive radar
has the advantages of covertness and deployment flexibility,
passive sensing is more challenging than its active counter-
part because the transmitted signal is generally unknown at
the receivers. Several research efforts have been spurred to

FIGURE 8. Configuration of a passive multistatic radar system.

address the target detection problem in passive multistatic
radar [32], [33], [37].

Consider a multistatic passive radar system that consists
of N geographically dispersed stationary receivers and one
non-cooperative stationary transmitter located in a plane
which also contains a moving target [37]. The waveform x(t)
transmitted by the IO impinges on the target and terminates at
the receivers, forming a target signal with a bistatic delay of tn
and a Doppler frequency of fn at the n-th receiver. In addition
to the target echo, there is also a direct-path interference
from the IO to the n-th receiver, with a propagation delay
of dn. We assume that any direct-path propagation is treated
as interference. As a result, the system does not employ
a reference antenna pointing to the IO direction to collect
a reference IO signal. Fig. 8 provides an illustration of the
setup. The dashed lines represent the reflection from the
target and the solid lines are the transmission from the IO
source. Since the location of the IO is usually known at each
receiver, the direct-path induced delay dn can be compensated
to the target-path delay tn, which gives τn , tn − dn,
where τn represents the propagation delay difference between
the target-path and the direct-path at the n-th receiver. For
simplicity, we assume the system is a stationary passive radar
system (radar receivers are placed on stationary platforms),
where the clutter has been filtered out in a pre-filtering stage.

Given the above discussions, the delay-compensated signal
observed at the n-th receiver is given by

yn(t) = βnx(t)+ αnx(t − τn)e2π fnt + ñn(t), (9)
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where βn is the scaling coefficient which includes the antenna
attenuation and the channel propagation effects from the IO
to the n-th receiver, ñn(t) contains the clutter and noise at
the n-th channel, and αn is the scaling coefficient accounting
for the target reflectivity. Specifically, αn lumps the target
radar cross-section (RCS), the antenna gain, and channel
propagation effects from the IO to the target and then from
the target to the n-th receiver.

The IO waveform x(t) has a duration of Tt seconds, e.g.,
due to framed transmissions employed by the IO, in which
case Tt represents the frame duration. At the receiver end,
the observationwindow To is chosen such that To ≥ Tt+τmax,
where τmax denotes the maximum tolerated delay difference.
Let the transmitted waveform have a bandwidth of B. Then,
the received signal at each channel is sampled at frequency
fs ≥ 2(B + fmax), where fmax is the maximum Doppler
frequency of the target that is designed to be detectable by
the passive system. The K samples of the observed sig-
nal are sequentially organized into an K × 1 vector with
K = bTo/Tsc, where Ts = 1/fs denotes the sampling interval.
Let yn ∈ CK×1 denote the sampled complex baseband signal
at the n-th receiver, the target detection problem is to select
between the following two hypotheses:

H0 : yn = βnx+ nn,

H1 : yn = βnx+ αnD(τn, fn)x+ nn, n = 1, · · · ,N ,

(10)

where x ∈ CK×1 contains the discrete samples of x(t);
D(τn, fn) is the delay-Doppler operator that accounts for the
delay and Doppler shifts imparted to the IO signal as it prop-
agates to the n-th receiver along the target path; nn ∈ CK×1

is the noise vector. Note that when multiplied by D(τn, fn),
the signal x is first converted into the frequency domain and
then phase-shifted (in the frequency domain) due to the time
domain delay τn. Then, it converts the delay-shifted signal
back to the time domain and imposes a phase shift (in the
time domain) caused by the Doppler frequency fn.
The non-cooperative nature of passive sensing, i.e., the

IO waveform x is generally unknown, imposes an additional
challenge in solving the passive detection problem in (10),
when compared to its active counterpart. The IO waveform
can be treated as a deterministic unknown vector to develop
solutions, e.g., the energy detector (ED) and the general-
ized canonical correlation (GCC) detector [32]. However,
the number of unknowns to be estimated in such detectors
grows with the number of observations. Another method to
avoid such a disadvantage is to model the IO waveform
as an element-correlated stochastic process with unknown
temporal correlation. Specifically, an AR model is used to fit
the stochastic IO waveform where the temporal correlation is
parameterized by the AR coefficients and the driving noise
variance. A P-th order AR process is expressed as

x(k) = −
P∑
p=1

a(p)x(k − p)+ w(k), k = 1, · · · , K̄ , (11)

where K̄ is the number of transmitted IO signal samples, a(p)
is the p-th AR coefficient with a = [a(1), · · · , a(P)]T , and
w(k) ∼ CN (0, σ 2) is the zero-mean driving noise. Note that
K̄ ≤ K , since the observation window To is selected to be no
less than the time duration Tt of the transmitted signal with
delay. Given (11), x is zero-mean Gaussian distributed with
covariance matrix Cx(a, σ 2), which is Hermitian, Toeplitz,
and thus can be fully determined by its first column, i.e.,
the auto-correlation function (ACF) sequence. In addition,
the relationship between the AR parameters {a(p)}Pp=1 and
σ 2, and the ACF sequence is described by the Yule-Walker
equations [51]. Note that theARmodel is introduced tomodel
the IOwaveform, which brings the advantage of capturing the
waveform correlation and exploiting it to improve detection
performance.

The AR model in (11) can be used to develop solutions for
the passive detection problem in (10), i.e., a parametric detec-
tor. The ML estimations in the development of the detector
turn out to be highly non-linear and do not have closed-form
solutions [38]. An expectation-maximization (EM) proce-
dure can be formulated to solve the estimation problem, and
the estimates are subsequently used to derive a parametric
GLRT detector. The EM algorithm alternatively iterates an
expectation step and a maximization step until a convergence
is achieved. Specifically, it first needs to determine the ‘‘com-
plete’’ data as z = [xT , yT1 , · · · , y

T
N ]

T which includes both
the unknown IO waveform and the observations from N
receivers. After specifying the ‘‘complete’’ data, the EM
algorithm starts with an initial guess of the unknown param-
eters {αn}Nn=1, {βn}

N
n=1, and AR parameters {a(p)}Pp=1 and σ

2

under H1; the unknown parameters under H0 are the same as
those of H1 except for the target scaling coefficients {αn}Nn=1.
In fact, we only need to initialize the correlation matrix
Cx(a, σ 2) of the IO waveform instead of the AR parameters
directly. A simple way is to initialize the covariance matrix
to an identity matrix, which implies that the waveform cor-
relation is ignored for the start of the EM algorithm. During
each iteration of the EM algorithm, an expectation step (E-
step) is followed by a maximization step (M-step) [37], [38].
In particular, the E-step is intended to find the expectation
of the log-likelihood function (LLF) of the ‘‘complete’’ data
z, which is taken with respect to the signal waveform x
and conditioned on observations {yn}Nn=1 given the estimates
of the unknown parameters from the last iteration. Then,
theM-step is intended tomaximize the expectation of the LLF
with respect to the unknown parameters. The maximization is
carried out sequentially with respect to each parameter group,
including the scaling coefficients, the AR parameters, and
the channel noise variance. When maximizing with respect
to a specific group, the other parameters are fixed as the
results from the last iteration or from the latest updates in this
iteration. The iteration cycle is repeated until the algorithm
converges, e.g., the difference of the estimates of the unknown
parameters from the recent two iterations are smaller than
a certain pre-defined tolerance level. Once the EM iteration
converges, the final estimates of the unknown parameters can
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FIGURE 9. Parametric detector for passive multistatic radar.

FIGURE 10. Detection performance of the parametric GLRT versus the
target SNR using an FM waveform as the IO with N = 3 receivers. In the
simulation, the AR model order is estimated as P = 1 based on the
generalized Akaike information criterion (AIC) [50]. The target delays are
[2.2, 3.6, 4.9]Ts for the three paths, the target Doppler are
[3.1, 0.8, −3.6] fs

K , the SNR of the direct signal is 0 dB, and the
probability of false alarm is set to 10−2.

be substituted back into the likelihood ratio to compute the
test statistic. The flowchart of the parametric detector for
passive multistatistic radar is shown in Fig. 9.
Since the detector is developed based on the assumption

that the IO signal follows a scalar AR model, a mismatch
may exist between the assumption and the exact IO signal.
Fig. 10 reproduced here is for the case of a frequency mod-
ulation (FM) signal that is employed as the IO waveform to
test the performance of the detectors. It illustrates the gains
provided by the parametric GLRT (curve labeled ‘‘pGLRT’’),
which exploits the waveform correlation by modeling the
IO signal as an AR process, over conventional detectors.
For comparison purposes, three conventional detectors are
also included in the analysis. The ‘‘clairvoyant MF’’ curve
comes from the matched filtering (MF) detector assuming
that the IO waveform is perfectly known, which serves as
an upper bound for all passive detectors considered in this
section. The ‘‘mGCC’’ stands for the modified version of the
original GCC detector, which was developed in the absence
of direct path interference (DPI) [32]. The modification is

carried out by adding a DPI cancellation step which sub-
tracts the estimated DPI from the original observation to
obtain the modified observation and replacing the original
observation in the existing detector with the modified one
(see [37, Section 4.1] for details). Finally, the ‘‘sGLRT’’
represents the simple GLRT where the covariance matrix Cx
is replaced by an identity matrix, i.e., the correlation of the IO
waveform is completely ignored. It is observed that the per-
formance of the pGLRT detector is close to the upper bound
provided by the clairvoyant MF and the sGLRT detector
performs 2 dB worse than the pGLRT detector in our setup.

V. CONCLUSION
In this survey article, we have shown that AR processes
can be employed to model the clutter and unknown source
signal to reduce the requirement of training data for effective
target detection. There are some subtle differences in apply-
ing parametric modeling in solving different radar detection
problems. Specifically, in phased-array radar, the disturbance
is modeled as multi-channel AR process. For distributed
MIMO radar, a set of independent scalar AR processes are
used to model the clutter observed at different Tx-Rx pairs,
which are capable of capturing the variations in both clutter
structure and power level across different probing-observing
angles. Finally, for passive radar, the unknown IO signal is
treated as an element-correlated stochastic process, which
can be represented by an AR model. In all cases, we have
demonstrated that AR modeling is able to bring significant
performance improvement over conventional non-parametric
methods, in particular when training data is limited.
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